US009921871B2

az United States Patent

Upadrasta et al.

US 9,921,871 B2
Mar. 20, 2018

(10) Patent No.:
(45) Date of Patent:

(54) EVENT PROCESSING SYSTEMS AND
METHODS
(71) Applicant: MuSigma Business Solutions Pvt.
Ltd., Bangalore (IN)
(72) Inventors: Bharat Upadrasta, Bangalore (IN);
Srinivasan Sudarsanam, Bangalore
(IN); Zubin Dowlaty, Georgetown, TN
(US); Subir Mansukhani, Hyderabad
(IN)
(73) Assignee: MU SIGMA BUSINESS SOLUTIONS
PVT. LTD., Bengaluru (IN)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 30 days.
(21) Appl. No.: 14/578,254
(22) Filed: Dec. 19, 2014
(65) Prior Publication Data
US 2016/0026495 Al Jan. 28, 2016
(30) Foreign Application Priority Data

Tul. 25,2014 (IN) 3649/CHE/2014

(51) Int. CL

GO6F 9/46 (2006.01)
GO6F 9/48 (2006.01)
GO6F 9/455 (2006.01)
(52) US. CL
CPC GO6F 9/466 (2013.01); GO6F 9/4843
(2013.01)
(58) Field of Classification Search

None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,314,555 B1* 112001 Ndumu ..o GOG6F 8/10
706/49

6,681,243 B1* 12004 Putzolu HO4L 29/06
709/202

2005/0114500 Al* 5/2005 Monk HO4L 12/2602
709/224

2006/0075408 Al1* 4/2006 Powers GOG6F 9/5072
718/100

2013/0204922 Al1* 82013 El-Bakry GO06Q 10/06
709/202

(Continued)

Primary Examiner — Wynuel Aquino
(74) Attorney, Agent, or Firm — Harness, Dickey &
Pierce, PL.C.

(57) ABSTRACT

An event processing system includes a multi-agent based
system, which includes a core engine configured to define
and deploy a plurality of agents configured to perform a first
set of programmable tasks defined by one or more users. The
first set of tasks operates with real time data. The multi-agent
based system also includes a monitoring engine configured
to monitor a lifecycle of the agents, communication amongst
the agents and processing time of the tasks. The multi-agent
based system further includes a computing engine coupled
to the core engine and configured to execute the first set of
tasks. The event processing system includes a batch pro-
cessing system configured to enable deployment of a second
set of programmable tasks that operates with non-real time
data and a studio coupled to the multi-agent based system
and configured to enable users to manage the multi-agent
based system and the batch processing system.

14 Claims, 9 Drawing Sheets

136 W18 Mo w2 e ue e 150 00
{ { { ({ j { { {)
Details for All EcoSystems ~-—132 \1 \ \ \ (\j 3) (
Ecosystems Agenties Ageats Hast | tobox | Computing | Totet Msgs | Tot Msos | Msgs Rove | TimeStamp
o an Msgs | Time(ms) Rovd Sent Fram
I & MUSTANG [Il] o —]] i HI][]
N : w:t" 11 MINT_LogRetums | eorefatonAgentlog..| icosed | 0 1045053 | ¢ 63475 QUFOR0M...
L & roovy 2| MINT News yahooNewsAgent | icosad | © 2069.64 | © 40504 13014,
3| MINT RawPrces | coelationAgentRa .| icosad | 0 0.00 8740 33750 consume...| 01/30/2014...
4] MINT LogRetumns | mstAgenitR cosad | O 78.98 13895 27380 corrglatic...] 01/30/2014...
Agencies 5 MINT_Gameboarg smBrdConsumer icosald | Q 0.00 ¢ 20238 Q1i30R2014...
& 5| MINT_News nasdagNewshgent | icosad | 0 920682 | ¢ 15457 G130/2014...
I & Property Test 6| MINT LogRetuns | sammons?DAgentiR| icosad | 0 47.38 13695 13595 correlatio | 01/30/2014..
& MINT_RealTime 7| MINT LogRetums t| cosad | © 59.01 13595 13805 01/30/2014.
- &2 MINT_GB_Events B " .
| & ScalsbiityTestagent | || 8| MNT_LogRetums icosad | 0 51.23 13505 13505 .} 013072014,
- & Scalability TestAgent 4 MINT_LogRetumns | commCenbalilyAgen | icosat | 0 49.37 13895 13695 msthgent.| 01/30/20%4..
[~ & ScalabilityTestAgent | |110] MINT_Gameboard | ¢ VQAgenl icosad | O 0.00 6746 13482 GmBrdCo.| (113012014
Agents 11| MINT_RawPrices | g nt icosa2 | 0 0.00 €746 13480 correlatio | 01/30/2014...
- & commCentralityAgent| |12 MINT News goodieNewsAgent icosal | 0 413¢0.06 | ¢ 10111 01/30/2014...
& VarCumsumielaTr.. | |12 | MinT_Gameboars | GmBratls: icosad | 0 0.00 6746 6748 GmBaG | 01/30:2014...
I &2 Scalabitity TestAgent o . -
| & ScalstiityTestagentz| || 14] MINT Sameboars iwosad | 0 0.00 6748 6748 GmEdC...| 01:30/2014...
I & ScalzbliityTestAgentd] || 16| MINT_ Gameboard icosad | © 0.00 6746 6748 GmBEQ...) 01302014,
Systems 16| MINT RawP ivosad | 0 0.00 © 6742 04/30/2014...
| 5 Active MO 17| MINT_RawPrices jcosal | © 0.00 €746 G745 mstAgent, | 01/30/2014..
181 MINT _RawPrices ForeelireciedAgent | cosa3 | 0 000 €746 674G corrglatic..f §1/30/2014..,
181 MINT_RawPrices sammens2Agent icosal3 | 0 0.00 €746 8738 correlatic. | 01/30/2014

US 9,921,871 B2

Page 2
References Cited
U.S. PATENT DOCUMENTS
2015/0154039 A1* 6/2015 Zada GOGF 9/5011
2015/0244775 A1* 8/2015 Vibhor G06Q Z(l)%é
709/203

* cited by examiner

US 9,921,871 B2

Sheet 1 of 9

Mar. 20, 2018

U.S. Patent

142
NILSAS
ONISSIO0Hd
HO1vg

l Old

8l ITNAOW NOILYIINNWNOD

0l

4

3

9l

Zh
W31SAS d3svd
ANIOV-ILTNA

4

olanis

L

US 9,921,871 B2

Sheet 2 of 9

Mar. 20, 2018

U.S. Patent

8z
31NAOW
3OVHOLS

¢ Old

vz z 9z
INIONT |«—»{ INIONT [«—> INIONI :
ONIHOLINOW 340D ONLLNGWOD |
..................................... »»»
P V/Nv

- 91 - =

IIIIIIII N |

| oIanLs 1 |

|
.......... R PR

Y Y Y

Uy \ 4 .y

.

US 9,921,871 B2

Sheet 3 of 9

Mar. 20, 2018

U.S. Patent

HANIVLINOO AONIDV

oy
HIOVNYIA
Viva V13w

P¥ ¥3Q1UNg Zv INIOV

il 1

1S3N03Y

AONZOV H43A01d43d

ZZ ANIONZT 3H0D

(NOSP) SON3S

9l
olanis

US 9,921,871 B2

Sheet 4 of 9

Mar. 20, 2018

U.S. Patent

09

v Old
_ _

azs |, _ ozs || ves |,
LNIOV J_ INIOV K INIOV []
85 | 9G | ¥G |
HOSSID0Md | | doss300Md| | | ¥OSSIOONd |
| | |
| | |
[F————— L F———————= |_

| _ _

_ _ _

—l_ Il Il
NS | 325 “l azs |_ "| oS |“ azs n| vZs |_ .
INFOV IN3OV | | INJOV | | INIOV | |INZOV | | INIOV

US 9,921,871 B2

Sheet 5 of 9

Mar. 20, 2018

U.S. Patent

\V

2
HINYIS
13008

/

9L
ELEREIN

ONIIOLINON

NOILYOlddV
ONIHJOLINOW

8/ MHOMIANWYNA
103rg0
88300V Vivd

8¢
JTNAOW
JOVHOLS

G 9Old
NOL €04 vO.
HIANIVINOD |- HIANIVINOD | | H3ANIVINOD
INADY INTADY IN3ADY
9
HOLVYLITOVA
% AHOLO3MIC
HOLOAJSOULNI
€9 IDINYES
o ANTWIDOYNYIN
9 INIOV
HIANIVINOD NIVIN
19 IWHO4LVYd

US 9,921,871 B2

Sheet 6 of 9

Mar. 20, 2018

U.S. Patent

9 Old

[& & S B &

£juebyisa LAIgeens & —
Qwsbyisa | Aljgeless @ —
Lsbyise | Aigeieos @ —
webyspel | ul] BIopWNSWINDIeA @ —
juabyARiERUS DWW £ —
76—~ sjusby
901 webyise) Aligejeos @ -
. webyisa L Aigeiers @ —
N visel Aljigeieos webyise | Aligeiens o —
Py ajl4 MIIA w«C®>m3mOH‘~|Z:\/_ [~
Swiiieay ININGQ
viowunoo | awen uogound Z01 1se4 Aladoid @ —
saji4 Buoddng v @
HY sl 06 —~ Sausby
- | 9|GEeIe0S swep juaby ﬁ..dammh Ayigejeos wﬂ ﬁ..mgmm... mﬁm_mom;
Bung ndino AROOIS) @ l/
jnduy sel @
ININ @ Z6
o0A Joineys
#1oAD Ineysed J T p— aby |ONVLISNNG
By 3aVrY adA] yeby v PeRiuN Fousby v @
ANTVA ALMIA4ONd MmN olEl | apon seauen—go) | WOISASO93 [Tgygishsoog |~ 96
_ e b, e m
por -~ TR
oju| @sesey uwpy Buuwoyuopy \ olpms s1p8l0ld SWOH

o \ z8

US 9,921,871 B2

Sheet 7 of 9

Mar. 20, 2018

U.S. Patent

OZ‘\

JARSIE

13 ploysaiyy abessop

“! SISO
O slgeess
A SWeN uooundg 8so0ys _ BWEN UONOUNS ~~ 77|,
USSOYD O}t ON E aswep jusby
Uasoyo 3l ON E alie Jusby
_ auieN eby ~ gz

nding 1sieg _ ndidnO g1 |

Induy joejeg _ nduj ~——gj

219k _ INONBYSE ~~1, |

juaby _ adA) by ~ 71|

jueby sjesin

US 9,921,871 B2

Sheet 8 of 9

Mar. 20, 2018

U.S. Patent

8 Old

TYL0Z0EA0 [onejenod 6€L9 9v.L9 000 0 | gesodt juSBYZsuCWES saoudmey ININ | 6L
TRPLOZAOC/LD | onelenoD ov.L9 gpL9 000 0 | cesoor | Webypsdan(isoio4t seoudmey T ININ g1
TPL02/0e/10 | uebyisu ov29 o929 000 0 | gesoor iuabyApeiusduiuod seougMeY ININ | 2L O AoV 7]
TPL0g/I0e0 Q¥/.9 o] 000 0 | ceson; juabyiewnsuoy sa0udMEY INIA 9l mEQw\ﬁm
TYL0ZI0EN0 | Dpigws 919 9749 000 0 | cesonr [onapaigeieigpigun | preogewes”ingy | g1 || [clueBvisa L Auigeieog o —
TPLOZIEN0 | Opigwe 9729 929 000 0 | cosoo, | SUORERIOOPIEES | peogewenTiNw vy || [BUSEWISSLAMIGEEDS G —
- _ Luebyise Aupqelecs a —
PLOCIOE/LO | opigwD 9¥.L9 9vL9 00°0 0 | gesodl BWPIGWO | pieoGaWRS ININ - €1 (1) elopyuinswinoeA o —
TPLOZI0E/0 104 0 [9006eLL 0 | geso 1ebysmansiboot smaN INWN | zi || JusBvAneus)uILLod 3 —
PL0Z/0E/L0 | oneeioo 08¥e1 9v.L9 000 0 | geson webyjsw seougmey LNIN |t} siuaby
TPLOZ/0E/L0 [ToDpIgnY Z6¥EL 949 000 0 | gesoot 1WebyDAPIGWD | pieogawes NN |01 1u8bvis0 L ANIGE[E0S @ -
TPL0Z/0E/L0 [uebyisw G69¢1 S69¢E1 186y 0 | vesooy |usbByhenuapuios | suimeybBoT ININ | 6 webvisa LAugeieos @ —
“PLOZIOEL0 | oneeLIe0 56951 BoEL €715 o | vesoo [gTusbyagsuowmes | swnmewbor i | o || | MEPVIseLANGEROS @
TPLOZ/0C/L0 | ONRBLIOD) BS0D! ["'JUe BJ0N{(BI04 swmeybot mucm>m mmu:,.._.Z:\/_Q 7]
L0z/0EM Hnef G69EL S69E1 L0'6G 0 | pesoot [Juebype)pangecioy oybot ININ | 2 Wi eay L NIA @ -
“YL0Z/0E0 [Tonejen0d G69EL S69E1 9Ly 0 | ¥eso0) [yueby(Qzsuowwes | swmeyBot ININ | 9 188} Auedoid @ —
“ELOZI0EN0 1GbS1 0 z8'9026 0 | gesooy | jusBysmaNDepseu SMaNTININ | v &
“PL0ZI0E/0 8¢202 0 000 0 | ¢eso fBUNSUCOPIGWD | precgawe ININ | G sepusby
“HLOZIOL/L0 | onees0 08€22 G69€1 9682 0 | pesoo dpuebyisw | swryeMBoT INWKN | b
PLOZE/L0 | TTewnsuoo 004¢¢ OvLi9 000 0 | cesoot |eyjusebyuoneeliod | seoudmey ININ | €
“pLOZIOEIL0 v050t 0| veso6z 0 | gesan smaNTININ | 2 >>Nwww M
" p1L0Z/08/L0 G/¥89 0 | £506v0t 0 | pesoyy [“Bouebyuone@ios | swneyboT NN b ININ @
_ _ _)| _ _ _ | _ ONVLSNN
A=
(04 eg pADY (sw)ysun} | sBspy
dureygautl | proy sBsyy | sBsin jejoy | sBsiy oL | Bugndwio) | xoquy JSOH sueby sopuaby mEmwm\»onm
AN Vi ra ra AN ya Fa ya yi
x / / / x ﬁ / A/ / 21 ~— sweIsAgoo] |y 40} S|iB1aQ
omﬁ\ 0S8 1534" oy 474" ari 0)747 8el el oEl

US 9,921,871 B2

Sheet 9 of 9

Mar. 20, 2018

U.S. Patent

6 Old

8l¢e
(8)3oinaa
ONILNGWOD
H3HLO

il

o912 vizZ
(8) 1404 @mmjoEzoo
TWINOD MHOMLIN A.||_||_JV
(1144
S3DIATA NOILVOINNWINDD
ziz
HATIONINOD
va JOV4NILINI
202 13TV
(8)1¥0d A V
on ore
@mmjom:zoo
JOVHHILNI
TVIM¥3S

30¢

SIAOV4HILNI TYHIHJIH3d

(4874
{(s)L1d0d
Y

90Z LIND
K {oNiss300ud
olany

#0Z LINA
K ONISSI00Nd
SOIHdVHO

002 S301N30 LNdLNO

=

861 SNG/30V4H3LNI

861 SNG FOVIHILINI 3OVHOLS

061 d3TMOHLINQD
FOVALALNYSNE

K=

b

il

961 (QaH "o 3)
FOVHOLS
TGYAOWIY-NO

FOVHOLS
N A1GVYAONTY

¥61 (AAG/AD “9'3)

261 SFDIAZQ IOVHOLS

8.1

HITIOHINOD AHOWIW

¢

| 9u1suztsiomy |

YLL 4STN

FHO00 H¥0$S300Hd

d4/07v

CLt
FHOVO
Z 13AFI

0L4
3HOVO
IELE]L

dSd/0n/dN

91 J40SS300Hd

881 v.ivQd InIL
vY3d- NON
ONV JALL VI

¥8i

V.IVO AVEDOHd

98} NILSAS
ONISS300Hd
IN3IA3

28l
NOLLYOIddVY

081

WILSAS ONILVHILO

NVH/NOH

991 AMJOWIW WILSAS)

291 NOILVHNDIN

00 Disvd

091 FDINIA H3LNdNOD

US 9,921,871 B2

1
EVENT PROCESSING SYSTEMS AND
METHODS

BACKGROUND

The invention relates generally to frameworks, and more
particularly to an event processing system for processing
real time data and non-real time data while executing
programmable tasks.

In today’s information-rich environment, the efficient
handling of massive volumes of data is important and
challenging. Typically, this data may be provided in streams,
with, in many instances, data values being generated in
real-time, as events occur. For example, microsensors used
in radio-frequency identification (RFID) in tracking and
access applications can provide streaming data on locations
of objects being tracked. As another example, data defining
financial transactions may be provided in a stream as those
transactions occur.

For many businesses the ability to operate on streaming
data arriving in real-time can provide significant competitive
advantage. For example, financial operations that are based
on results of financial transactions may receive streams of
data on trades as they occur. Moreover, responding to
particular signals in the streaming data quickly is often a
critical aspect of many applications. As an example, network
monitoring systems used by government agencies to detect
security threats need to detect and report events represented
in streams of data collected through monitoring.

However, in most applications, processing of streamed
data is performed by first storing the data in a database. The
database could then be queried to retrieve the data for further
processing and analysis. Therefore, analyzing the data in
real-time is difficult, because of the limits imposed by
database access time, particularly for streams with high data
rates.

Therefore, there is a need for an integrated system that
enables the use of real time and non-real time data in event
processing systems while executing several software appli-
cations.

SUMMARY

Briefly, according to one aspect of the invention, an event
processing system is provided. The event processing system
includes a multi-agent based system. The multi-agent based
system includes a core engine configured to define and
deploy a plurality of agents configured to perform a first set
of programmable tasks defined by one or more users. The
first set of programmable tasks is configured to operate with
real time data. The multi-agent based system also includes a
monitoring engine configured to monitor a lifecycle of the
plurality of agents, communication amongst the plurality of
agents and a processing time of the programmable tasks. The
multi-agent based system further includes a computing
engine coupled to the core engine and configured to execute
the first set of programmable tasks. The event processing
system includes a batch processing system configured to
enable deployment of a second set of programmable tasks
that operate with non-real time data and a studio coupled to
the multi-agent based system and configured to enable the
one or more users to manage the multi-agent based system
and the batch processing system.

In accordance with another aspect, a real time multi-agent
based system for executing programmable tasks is provided.
The system includes a core engine configured to define and
deploy a plurality of agents configured to perform a set of

20

40

45

55

2

programmable tasks defined by one or more users. The set
of programmable tasks is configured to operate with real
time data. The real time multi-agent based system also
includes a monitoring engine configured to monitor a life-
cycle of the plurality of agents, communication amongst the
plurality of agents and processing time of the programmable
tasks. The real time multi-agent based system further
includes a computing engine coupled to the core engine and
configured to execute the set of programmable tasks and a
studio coupled to the multi-agent based system and config-
ured to enable the one or more users to manage the multi-
agent based system.

In accordance with yet another aspect, a method for
processing an event is provided. The method includes defin-
ing and deploying a plurality of agents configured to per-
form a first set of programmable tasks defined by one or
more user. The first set of programmable tasks is configured
to operate with real time data. The method also includes
monitoring a lifecycle of the plurality of agents, communi-
cation amongst the plurality of agents and a processing time
of the programmable tasks. The method further includes
executing the first set of programmable tasks and deploying
a second set of programmable tasks that operates with
non-real time data. In addition, the method includes enabling
the one of more users to manage the real time data and the
non-real time data.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects, and advantages of the
present invention will become better understood when the
following detailed description is read with reference to the
accompanying drawings in which like characters represent
like parts throughout the drawings, wherein:

FIG. 1 is a block diagram of one embodiment of an event
processing system implemented according to aspects of the
present technique;

FIG. 2 is a block diagram of one embodiment of a
multi-agent based system implemented according to aspects
of the present technique;

FIG. 3 is a block diagram of one embodiment of a core
engine implemented according to aspects of the present
technique;

FIG. 4 represents an example scenario depicting mobility
of agents across several processors implemented according
to aspects of the present technique;

FIG. 5 is a block diagram of an example platform and
related operations for monitoring of an event processing
system implemented according to aspects of the present
technique;

FIG. 6 is graphical representation of an example studio
interface for enabling one or more users to create agents,
agencies and ecosystems implemented according to aspects
of the present technique;

FIG. 7 is graphical representation of an example user
interface for creating an agent implemented according to
aspects of the present technique;

FIG. 8 is graphical representation of an example user
interface depicting ecosystems, agencies and agents of an
event processing system implemented according to aspects
of the present technique; and

FIG. 9 is a block diagram of an example general-purpose
computing device used to implement an event processing
system implemented according to aspects of the present
technique.

DETAILED DESCRIPTION

The present invention provides an event processing sys-
tem and method configured to process real time data and

US 9,921,871 B2

3

non-real time data while executing programmable tasks. The
event processing systems and methods are described with
example embodiments and drawings. References in the
specification to “one embodiment”, “an embodiment”, “an
exemplary embodiment”, indicate that the embodiment
described may include a particular feature, structure, or
characteristic, but every embodiment may not necessarily
include the particular feature, structure, or characteristic.
Moreover, such phrases are not necessarily referring to the
same embodiment. Further, when a particular feature, struc-
ture, or characteristic is described in connection with an
embodiment, it is submitted that it is within the knowledge
of one skilled in the art to affect such feature, structure, or
characteristic in connection with other embodiments
whether or not explicitly described.

FIG. 1 is a block diagram of an event processing system
adapted to process real time data and non-real time data in
accordance with the present technique. The event processing
system 10 is a distributed framework with loosely coupled
components. The event processing system 10 includes a
multi-agent based system 12, a batch processing system 14,
a studio 16, and a communication module 18. Each com-
ponent is described in further details below.

Multi-agent based system 12 is configured to receive a
first set of programmable tasks defined by one or more users.
As used herein, the term “user” may refer to both natural
people and other entities that operate as a “user”. Examples
include corporations, organizations, enterprises, teams, or
other group of people. In this embodiment, the first set of
programmable tasks is configured to operate with real time
data. Examples of the first set of programmable tasks include
algorithmic trading, fraud detection, demand sensing, pay-
ments and cash monitoring, dynamic pricing and yield
management, data security monitoring, supply chain opti-
mization and the like.

Multi-agent based system 12 comprises agents configured
to represent an application defined by one or more users. For
the purpose of this description, an agent refers to a software
program designed to carry out one or more programmable
tasks. The agent is further configured to communicate with
other agents in the event processing system 10.

Multi-agent based system 12 performs various operations
like creating and deploying the agents to perform the first set
of programmable tasks, monitoring a lifecycle of the agents
and executing the first set of programmable tasks. In one
embodiment, the agent is an entity configured to perform
one or more analytical tasks defined by users. The agent is
created by uploading the analytical script file into the event
processing system 10. Further, the agents present in the
multi-agent based system 12 can be moved across separate
devices of the event processing system 10. The mobility of
agents across several devices is explained in detail in FIG.
4. The agents communicate with each other in the multi-
agent based system 12 using an agent communication lan-
guage. In one embodiment, the agents are implemented
using java agent development framework (JADE). In addi-
tion, the multi-agent based system 12 includes a library of
pre-defined agents.

Batch processing system 14 is configured to enable
deployment of a second set of programmable tasks defined
by users. In this embodiment, the second set of program-
mable tasks is configured to operate with non-real time data.
Examples of the second set of programmable tasks include
identifying causes of revenue leakage, customer buying
pattern, impact of price rise on sales, identifying sales

10

15

20

25

30

35

40

45

50

55

60

65

4

drivers and the like. The programmable tasks defined by the
users include scripts like R scripts, Python scripts and the
like.

Studio 16 is coupled to the multi-agent based system 12
and is configured to enable the users to interact with the
multi-agent based system 12 and the batch processing sys-
tem 14. The studio 16 performs various operations like
enabling the users to define the agents, triggering, deploying
the first set and the second set of programmable tasks, etc.

Studio 16 includes a user interface (not shown) configured
to enable the users to define the agents and to trigger and
deploy a set of programmable tasks. The studio 16 enables
the users to select and group a set of agents to form an
agency. In one embodiment, the set of agents are selected
based on a set of parameters determined by the users. The
agents are grouped together based on their input and output
type compatibility. For example, a first agent may generate
an output as a string and is grouped with a second agent that
accepts a string input. Studio 16 is further configured to
enable the users to select and group a set of related agencies
to form an ecosystem. In one embodiment, the set of
agencies are selected based on a set of criteria determined by
the users. Further, new agencies that are created can be
tagged to an existing ecosystem.

In one embodiment, studio 16 is built using advanced
visualization tools and techniques that makes it configurable
across different devices including mobile devices, tablets,
personal computers and the like. In addition, studio 16 acts
as a personal workspace of an individual user and allows
designing workflows either in a bottom-up manner (create
agents, group them together as agency and tag the agency to
the ecosystem) or top-down manner (create ecosystem, then
create and tag agency to it and then create agents within the
agency and group them together).

Studio 16 further enables the users to perform various
operations like create, edit, pause, delete, kill agents, agen-
cies and ecosystems. Studio 16 allows the user to view the
agent’s properties, the script file powering its functionality,
edit data information like name, alias etc., pause the agent
during its activity, kill the agent and delete its data.

Communication module 18 is configured to facilitate
communication between the multi-agent based system 12
and the batch processing system 14. Examples of the com-
munication module include enterprise service bus (ESB),
web OTX ESB, service oriented architecture (SOA) ESB
and the like. The functionality of the communication module
18 is characterized by its ability to integrate various under-
lying components of operation in a manner that facilitates
interaction and cooperation within the system. The manner
in which the multi-agent based system 12 operates is
described in further details below.

FIG. 2 is a block diagram of an embodiment of a
multi-agent based system implemented according to aspects
of the present technique. Multi-agent based system is con-
figured to perform a first set of programmable tasks. The
multi-agent based system 12 includes a core engine 22, a
monitoring engine 24 and a computing engine 26. FEach
component is described in further detail below.

Core engine 22 is configured to create and deploy agents
to perform a set of programmable tasks defined by one or
more users. In one embodiment, the core engine 22 is an
agent factory that creates the agents. The agents may also be
selected from a pre-defined library of agents. Further, the
core engine 22 is configured to define a functioning of an
agent according to a pre-defined agent behavior. It may be
noted that, an agent resides in the core engine 22 throughout
its life cycle. In one specific embodiment, the core engine 22

US 9,921,871 B2

5

is a sub platform of JADE responsible to validate, build and
publish the agency on receipt of a JavaScript Object Nota-
tion (JSON) representation of the agency. JSON is an open
standard format that uses human-readable text to transmit
data objects consisting of attribute-value pairs. It is used
primarily to transmit data between a server and a web
application.

Monitoring engine 24 is coupled to core engine 22 and is
configured to monitor a lifecycle of the agents. The moni-
toring of agents include a current state (one of active,
suspend and kill), agents in the system it communicates with
(including number of messages and content of those mes-
sages) and the processing time of its tasks. In one embodi-
ment, the monitoring engine 24 is developed using JADE.
JADE is a software development framework providing an
environment through a middle ware that complies with
foundation for intelligent physical agents (FIPA) specifica-
tions and services. JADE provides services that facilitate the
interoperability of the multi-agent based system 12 through
a host of resident entities as described below in FIG. 5.

The computing engine 26 is coupled to the core engine 22
and is configured to execute the first set of programmable
tasks. In one embodiment, the computing engine 26 includes
an R computing cluster of R machines that are used to run
the first set of programmable tasks. In one embodiment, the
R computing cluster is a group of R machines dedicated
solely for the processing of R-JADE agents. R-JADE agents
are a subset of all agents residing in the core engine 22.

A storage module 28 is coupled to the monitoring engine
24 and is configured to store real time data and non-real time
data associated with the first set of programmable tasks and
the second set of programmable tasks respectively. In this
embodiment, the storage module 28 is used to store meta-
data information at the ecosystem, agency, agent and user
levels. The manner in which the core engine 22 operates is
described in further detail below.

FIG. 3 is a block diagram of one embodiment of a core
engine implemented according to aspects of the present
technique. The core engine 22 includes a deployer agent 42,
an agency builder 44, a meta-data manager 46 and an agency
container 48. Each component is described in further detail
below.

A deployer agent 42 is coupled to the studio 16 and is
configured to receive request (JSON) via the studio 16 for
the creation of one or more agents. In one embodiment, the
deployer agent 42 present in the core engine 22 is a listener
implementation of a socket /O server and employs a dedi-
cated port to function. Socket I/O server is a java script
library for real time web applications. In addition, the
deployer agent 42 parses the input request into an appropri-
ate set of instructions compatible with agency builder 44 to
create one or more agents based on the received request.

Agency builder 44 is configured to create an agent tem-
plate that binds one or more parameters defining a behavior
of the agents. The agency builder 44 validates the set of
instructions received from the deployer agent 42 and builds
an agency. As used herein, an agency comprises one or more
agents. In one embodiment, the agency builder 44 is con-
figured to create one or more agents.

The meta-data manager 46 is coupled to the agency
builder 44 and is configured to perform several operations to
convert the agency bean to an agency container 48. The
several operations performed by meta-data manager 46
include adding behavior to the agents, plumbing scalability
feature to the agents, preparing agents for monitoring,

10

15

20

25

30

35

40

45

50

55

60

65

6

adding a logger agent to the agency, inducing mobility to the
computing process and agent, and wrapping agents in the
agency container 48.

Agency container 48 is coupled to the agency builder 44
and includes all the agencies that were created. Agency
container 48 is further configured to update an agency status.
In one embodiment, the agency container 48 is a collection
of all the agents that are grouped together based on a set of
parameters. In one embodiment, the set of parameters are
determined by the users and are implemented as a running
instance of the JADE runtime environment. The monitoring
and functioning of the agents is described in further detail
below.

FIG. 4 represents an example scenario depicting mobility
of agents across several processors implemented according
to aspects of the present technique. As described earlier, the
multi-agent based system comprises one or more agents. The
operations related to mobility of agents are described in
further detail below.

The agents and/or agencies present in the multi-agent
based system 12 are configured to be moved across separate
instances of the event processing system 10. In one embodi-
ment, each instance is executed on a separate processor. As
illustrated in the scenario represented in FIG. 4, the agent
52-Ais pushed to the processor 54 executing a first instance.
Similarly, the agent 52-D is pushed to the processor 58
executing a second instance. Further, it can be seen, that the
agent 52-C is pushed to the processor 56 executing a third
instance.

In one embodiment, the mobility of agents and/or agen-
cies is performed using several network protocols that allow
agents to move not only to another running instance of the
event processing system, but also to various hardware
devices such as mobile phones, mini computers and any
device that can be interfaced over a network. This provides
agents and/or agencies the ability to be embedded in various
processors to either extract or even process the data and
directly provide insights. Thus, the mobility of agents and/or
agencies offers a flexible data processing solution. Further,
all agents are monitored as described in further detail below.

FIG. 5 is a block diagram of an example platform and
related operations for monitoring of an event processing
system implemented according to aspects of the present
technique. The operations are described in further detail
below.

As described above, the agency container 48 is a collec-
tion of all the agencies. Platform 61 represents all active
agent containers. In the illustrated figure platform 61 com-
prises a main container 62 and agent container 70-A through
70-N. In the illustrated embodiment, the main container 62
represents the active container that is in active state at all
instances. Agent container 70-A through 70-N are registered
to the main container 62 upon initiation. Since the main
container 62 is the active container, it is the first container to
start on platform 61. The other agent containers 70-A
through 70-N are provided with information regarding host-
ing and porting with the main container 62.

The main container 62 includes an agent management
service (AMS) 63, a directory facilitator (DF) 64 and an
introspector 68. The main container 62 also includes a
centralized meta-data table comprising the address locations
of the agents contained in the agent containers (70-A
through 70-N). In one embodiment, the agent containers are
hosted on one or more nodes, each node being an individual
system. In addition, each node comprises a localized meta-
data table containing details pertaining to the agents hosted
on the node. Further, a custom kernel service is configured

US 9,921,871 B2

7

on each node to monitor the life-cycle of the agents included
in the agent container hosted on the node.

The AMS 63 is configured to process one or more requests
received from the agency builder 44. The AMS 63 is a
central controller of the main container 62 and is responsible
for overseeing an entire life cycle of the agents. The AMS 63
includes the entire details of the main container 62 that
comprises encompassing agent’s creation and deletion, loca-
tions and services provided.

The directory facilitator 64 is a service provider entity in
the main container 62. The DF 64 offers the details of all the
services provided by the agent, exposed as information for
other agents to know and make use of.

The introspector 68 provides monitoring service within
the event processing system 10 to subscribe to the AMS 63
and receive updates at both the agent as well as the agent
container (70-A through 70-N) levels. Further the introspec-
tor 68 investigates and records all events on the platform 61,
both at agent and agent container level. Lastly, the intros-
pector 68 latches onto any remote container created on the
platform 61. In its course of functionality, the introspector 68
captures the information from within the platform like agent
created, agent killed, agent state (current and change of
state), agent behavior (current and change of state), agent
computation time, messages received, messages sent, mes-
sages posted, container added, container removed.

In one embodiment, the events recorded within the plat-
form 61 by the introspector 68 are pushed using the socket
server 74 to a monitoring application 72 which collates all
the information in a structured JSON format and pushes to
the web socket for consumption by the monitoring interface
76. Further, the information received from the introspector
68 is passed to the storage module 28 via a data access object
framework 78. The data access object framework 78 is
responsible for CRUD operations related to data manage-
ment in JAVA.

The above described event processing system 10 imple-
ments several user interfaces to enable one or more users to
create the agents, agencies and ecosystems. Some of the
relevant interfaces are described in further detail below.

FIG. 6 is graphical representation of an example studio for
enabling one or more users to create agents, agencies and
ecosystems implemented according to aspects of the present

technique.

The studio interface 80 includes several tabs (shown by
reference numeral 82) like °‘ADD’, ‘DELETE’,
‘REFRESH’, ‘EDIT’, ‘CLONE’, ‘PUBLISH’, ‘KILL’,

‘SWITCH?’ etc. The ‘ADD’ tab provides the user an option
to create an agent, agency and/or ecosystem. The ‘EDIT” tab
allows the user to edit the configuration of an existing agent
and/or agency. The ‘CLONE’ tab allows the user to create
clones of an existing agent and/or agency. The ‘DELETE’
tab allows the user to delete the meta-data information of an
agent, agency and/or ecosystem. The ‘PUBLISH’ tab allows
the user to activate a lifecycle of an agent and/or agency in
the multi-agent based system 12. In addition, the ‘KILL’ tab
allows the user to actually terminate the functioning life-
cycle of an agent and/or agency in the multi-agent based
system 12. The ‘SWITCH’ tabs functionality is two-fold—it
allows the meta-data information about an agent and/or
agencies to be moved across databases. It also allows for the
agencies and/or agents themselves to be moved across
environments. In one embodiment, the tabs are relevant
based on the selection of either ecosystem, agency, or agent.
For example, on selection of ecosystem, the only tabs that
can be used are ‘ADD’, ‘DELETE’ and ‘REFRESH’ while
the remaining ones are greyed out.

20

25

35

40

45

55

8

The studio interface 80 includes a panel 92 that illustrates
the agents 94, agencies 96 and ecosystems 98 existing in an
example multi-agent based system 12. On invoking the
action of ‘ADD’ tab the interface transitions to the user
interface for creating agents. The studio interface 80 further
includes a canvas 100 that allows the user to drag and drop
agents available in the multi-agent based system 12 and wire
them together (as shown by reference numeral 102) based on
their input type and output type compatibility. The properties
associated with each agent are shown in pane 104 of the
studio interface 80 for a quick lookup. The ‘view file’ tab
106 displays the deployed analytical script file for the user.
The pane 92 is populated upon selection of an agent on the
canvas by tapping it.

FIG. 7 is graphical representation of an example user
interface for creating an agent implemented according to
aspects of the present technique. The user interface 110
enables the user to configure several parameters like agent
type (cell 112), behaviour (cell 114), input (cell 116), output
(cell 118), pertaining to the creation of the agent. Further, the
user can provide a name (cell 120) and select the function
(cell 122) for the particular agent to be created.

FIG. 8 is graphical representation of an example user
interface depicting ecosystems, agencies and agents of an
event processing system implemented according to aspects
of the present technique. The ‘Ecosystems’ pane (cell 132)
provides a table view of all the agents (cell 134) and their
associated parent agency (cell 136) in the event processing
system, host location of an agent (cell 138), number of
messages in its inbox (cell 140), computing time of the agent
(cell 142), number of messages received by an agent (cell
144), number of messages sent (cell 146), name of the
message sending agent (cell 148) and associated time stamp
of each message received (cell 150).

FIG. 9 is a block diagram of an example general-purpose
computing device used to implement an event processing
system implemented according to aspects of the present
technique. In a very basic configuration 162, computing
system 160 typically includes one or more processors 164
and a system memory 166. A memory bus 168 may be used
for communicating between processor 164 and system
memory 166.

Depending on the desired configuration, processor 164
may be of any type including but not limited to a micro-
processor (uP), a microcontroller (uC), a digital signal
processor (DSP), or any combination thereof. Processor 164
may include one or more levels of caching, such as a level
one cache 170 and a level two cache 172, a processor core
174, and registers 176. An example processor core 174 may
include an arithmetic logic unit (ALU), a floating point unit
(FPU), a digital signal processing core (DSP Core), or any
combination thereof. An example memory controller 178
may also be used with processor 164, or in some implemen-
tations memory controller 178 may be an internal part of
processor 164.

Depending on the desired configuration, system memory
166 may be of any type including but not limited to volatile
memory (such as RAM), non-volatile memory (such as
ROM, flash memory, etc.) or any combination thereof.
System memory 166 may include an operating system 180,
an application 182 comprising an event processing system
186 and a program data 184 comprising real time and
non-real time data 188.

An event processing system 186 is configured to process
real time data and non-real time data 188 while executing
programmable tasks stored in the program data 184. This

US 9,921,871 B2

9

described basic configuration 162 is illustrated in FIG. 9 by
those components within the inner dashed line.

Computing system 160 may have additional features or
functionality, and additional interfaces to facilitate commu-
nications between basic configuration 162 and any required
devices and interfaces. For example, a bus/interface con-
troller 190 may be used to facilitate communications
between basic configuration 162 and one or more data
storage devices 192 via a storage interface bus 198. Data
storage devices 192 may be removable storage devices 194,
non-removable storage devices 196, or a combination
thereof.

Examples of removable storage and non-removable stor-
age devices include magnetic disk devices such as flexible
disk drives and hard-disk drives (HDD), optical disk drives
such as compact disk (CD) drives or digital versatile disk
(DVD) drives, solid state drives (SSD), and tape drives to
name a few. Example computer storage media may include
volatile and nonvolatile, removable and non-removable
media implemented in any method or technology for storage
of information, such as computer readable instructions, data
structures, program modules, or other data.

System memory 166, removable storage devices 194 and
non-removable storage devices 196 are examples of com-
puter storage media. Computer storage media includes, but
is not limited to, RAM, ROM, EEPROM, flash memory or
other memory technology, CD-ROM, digital versatile disks
(DVD) or other optical storage, magnetic cassettes, mag-
netic tape, magnetic disk storage or other magnetic storage
devices, or any other medium which may be used to store the
desired information and which may be accessed by com-
puting system 160. Any such computer storage media may
be part of computing system 160.

Computing system 160 may also include an interface bus
198 for facilitating communication from various interface
devices (e.g., output devices 200, peripheral interfaces 208,
and communication devices 220) to basic configuration 162
via bus/interface controller 190. Example output devices
200 include a graphics processing unit 204 and an audio
processing unit 206, which may be configured to commu-
nicate to various external devices such as a display or
speakers via one or more A/V ports 202.

Example peripheral interfaces 208 include a serial inter-
face controller 210 or a parallel interface controller 212,
which may be configured to communicate with external
devices such as input devices (e.g., keyboard, mouse, pen,
voice input device, touch input device, etc.) or other periph-
eral devices (e.g., printer, scanner, etc.) via one or more 1/O
ports 207. An example communication device 220 includes
a network controller 214, which may be arranged to facili-
tate communications with one or more other business com-
puting devices 218 over a network communication link via
one or more communication ports 216.

The network communication link may be one example of
a communication media. Communication media may typi-
cally be embodied by computer readable instructions, data
structures, program modules, or other data in a modulated
data signal, such as a carrier wave or other transport mecha-
nism, and may include any information delivery media. A
“modulated data signal” may be a signal that has one or
more of its characteristics set or changed in such a manner
as to encode information in the signal. By way of example,
and not limitation, communication media may include wired
media such as a wired network or direct-wired connection,
and wireless media such as acoustic, radio frequency (RF),
microwave, infrared (IR) and other wireless media. The term

10

15

20

25

30

35

40

45

50

55

60

65

10

computer readable media as used herein may include both
storage media and communication media.

Computing system 160 may be implemented as a portion
of a small-form factor portable (or mobile) electronic device
such as a cell phone, a personal data assistant (PDA), a
personal media player device, a wireless web-watch device,
a personal headset device, an application specific device, or
a hybrid device that include any of the above functions. It
may be noted that computing system 160 may also be
implemented as a personal computer including both laptop
computer and non-laptop computer configurations.

The above described event processing system provides
several advantages including processing real time data in a
faster and more efficient technique by allowing for easy
deployment of analytical tasks in the form of process flows.
The event processing system is provisioned to support
statistical, data engineering and scoring models alike, aided
by a distributed and loosely coupled architecture for ease of
customization and usage.

It will be understood by those within the art that, in
general, terms used herein, and especially in the appended
claims (e.g., bodies of the appended claims) are generally
intended as “open” terms (e.g., the term “including” should
be interpreted as “including but not limited to,” the term
“having” should be interpreted as “having at least,” the term
“includes” should be interpreted as “includes but is not
limited to,” etc.). It will be further understood by those
within the art that if a specific number of an introduced claim
recitation is intended, such an intent will be explicitly recited
in the claim, and in the absence of such recitation no such
intent is present.

For example, as an aid to understanding, the following
appended claims may contain usage of the introductory
phrases “at least one” and “one or more” to introduce claim
recitations. However, the use of such phrases should not be
construed to imply that the introduction of a claim recitation
by the indefinite articles “a” or “an” limits any particular
claim containing such introduced claim recitation to
embodiments containing only one such recitation, even
when the same claim includes the introductory phrases “one
or more” or “at least one” and indefinite articles such as “a”
or “an” (e.g., “a” and/or “an” should be interpreted to mean
“at least one” or “one or more™); the same holds true for the
use of definite articles used to introduce claim recitations. In
addition, even if a specific number of an introduced claim
recitation is explicitly recited, those skilled in the art will
recognize that such recitation should be interpreted to mean
at least the recited number (e.g., the bare recitation of “two
recitations,” without other modifiers, means at least two
recitations, or two or more recitations).

While only certain features of several embodiments have
been illustrated and described herein, many modifications
and changes will occur to those skilled in the art. It is,
therefore, to be understood that the appended claims are
intended to cover all such modifications and changes as fall
within the true spirit of the invention.

What is claimed is:

1. An event processing system, the system comprising:

a controller, including

an interface, and

a first processor upon executing computer-readable
instructions to display the interface for usage by one or
more users, performing

receiving, via the interface, a request to create a plurality
of agents for performing a first set of programmable
tasks with reference to real time data,

US 9,921,871 B2

11

defining at least one parameter of each of the plurality of
agents and defining compatibility relationships among
the plurality of agents,
grouping a plurality of the agents together, based upon at
least one of the at least one defined parameter and the
at least one common compatibility relationship, to
create at least a first agency and a second agency,

storing, via the interface, the first agency and the second
agency, and moving the first agency from the storage to
separate physical processors,

wherein the first agency performs the first set of program-

mable tasks with the reference to the real time data, to
produce a first result;

wherein, by a batch processing system including a third

processor, the second set of programmable tasks are
deployed;

wherein the second agency is moved from the storage to

another separate physical processors; and
wherein the second agency performs the second set of
programmable tasks with respect to non-real time data
corresponding to the first result of the real time data;

monitoring data corresponding to a lifecycle of the first
agency and the second agency, communication-
amongst the first agency and the second-agency and a
processing time of the first set of programmable tasks
and the second-set of programmable tasks being per-
formed by the respective first and second agency,

managing a multi-agent based system and the batch
processing system, and

terminating, based upon the monitored data of the first set

of programmable tasks and the second set of program-
mable tasks by the respective first and second agency,
the first agency and the second agency.

2. The system of claim 1, wherein the first processor of the
controller is configured to be hosted on a plurality of
platforms.

3. The system of claim 1, further comprising: a monitor-
ing interface coupled to the multi-agent based system, a
second processor, upon executing the computer-readable
instructions to display the monitoring interface for usage by
the one or more users, being configured to enable the one or
more users to track one or more activities performed by the
multi-agent based system.

4. The system of claim 3, wherein the second processor,
upon executing the computer-readable instructions to dis-
play the monitoring interface for usage by the one or more
users, is further configured to enable tracking of a plurality
of messages communicated by the first agency and the
second agency via the monitoring interface.

5. The system of claim 1, wherein the first processor of the
controller is configured, upon executing the computer-read-
able instructions to display the interface for usage by one or
more users, to enable the one or more users to select and
group, via one or more of a plurality of tabs on the interface,
a set of the plurality of agents to group a plurality of the
agents into the first agency and the second agency, and the
set of the first agency and the second agency being selectable
based on at least one common defined parameter and/or at
least one common compatibility relationship determined by
the one or more users.

6. The system of claim 5, wherein the first processor of the
controller is further configured, upon executing the com-
puter-readable instructions to display the interface for usage
by one or more users, to enable the one or more users to
select and group, via one or more of the plurality of tabs, a
set of related agencies to form an ecosystem, and wherein

10

15

20

25

30

35

40

45

50

55

60

65

12

the set of related agencies is selectable based on a set of
criteria determined by the one or more users.

7. The system of claim 1, further comprising:

a communication module configured to facilitate commu-
nication between the separate physical processors, the
multi-agent based system and the batch processing
system.

8. The event processing system of claim 1, wherein the
first processor of the controller, upon executing computer-
readable instructions to display the interface for usage by the
one or more users, is configured to,

activate a lifecycle of each of the one or more of the first
agency and the second agency in the multi-agent based
system upon receiving a corresponding publish com-
mand, and

terminate the lifecycle of each of the one or more of the
first agency and the second agency in the multi-agent
based system upon receiving a corresponding kill com-
mand.

9. A real time multi-agent based system comprising:

a memory including a set of computer-readable instruc-
tions stored therein;

at least one processor, upon executing the set of computer-
readable instructions, performing,

receiving a plurality of agents from a controller, via
selections received from an interface of the controller,
the plurality of agents being defined by the controller
for performing a first set of programmable tasks with
reference to real time data, the controller, upon the set
of executing computer-readable instructions to display
the interface for usage by one or more users, perform-
ing, via selections received from an interface,

defining at least one parameter of each of the plurality of
agents and define compatibility relationships among
the plurality of agents

grouping a plurality of the agents together, based upon at
least one of the at least one common defined parameter
and the at least one common compatibility relationships
among the plurality of agents, to create at least a first
agency and a second agency,

storing the first agency and the second agency, and
moving the first agency from the storage to separate
physical processors,

wherein the first agency performs the first set of program-
mable tasks with the reference to the real time data, to
produce a first result;

wherein, by a batch processing system including a third
processor, the second set of programmable tasks are
deployed;

wherein the second agency is moved from the storage to
another separate physical processors; and

wherein the second agency performs the second set of
programmable tasks with respect to non-real time data
corresponding to the first result of the real time data;

monitoring data corresponding to a lifecycle of the first
agency and the second agency, communication
amongst the first agency and the second agency and a
processing time of the first set of programmable tasks
and the second set of programmable tasks being per-
formed by the respective first and second agency,

communicating the monitored data to the controller for
the controller to manage the multi-agent based system,
and

terminating, based upon the monitored data of the first set
of programmable tasks and the second set of program-
mable tasks by the respective first and second agency,
the first agency and the second agency.

US 9,921,871 B2

13

10. The real time multi-agent based system of claim 9,
further comprising: a monitoring interface, upon executing
the set of computer-readable instructions to display the
interface for usage by the one or more users, coupled to the
real time multi-agent based system and configured to enable
the one or more users to track one or more activities
performed by the multi-agent based system.

11. The real time multi agent based system of claim 9,
wherein the at least one processor is further configured to
execute the computer-readable instructions to one of activate
and terminate a lifecycle of one or more of the first agency
and the second agency upon receiving a corresponding
command from the controller.

12. A method for processing an event, the method com-
prising:

defining, using one or more of a plurality of tabs displayed

on a display of an interface, a plurality of agents for
performing a first set of programmable tasks with
reference to real time data; defining at least one param-
eter of each of the plurality of agents and

defining compatibility relationships among the plurality

of agents, using one or more of the plurality of tabs on
the display;

grouping a plurality of the agents together, based upon at

least one of the at least one defined parameter and the
at least one common compatibility relationship, to
create at least a first agency and a second agency, using
one or more of the plurality of tabs on the display, the
at least first agency and the second agency being
storable together and the at least first agency and the

10

15

20

25

14

second agency being movable between and executable
by separate physical processors;

defining a second set of programmable tasks to be per-

formed with respect to non-real time data correspond-
ing to the real time data;

deploying the at least first agency and the second agency

and the second set of programmable tasks to the
separate physical processors;

monitoring data corresponding to a lifecycle of the at least

first agency and the second agency, communication

amongst the at least first agency and the second agency

and a processing time of the first set of programmable

tasks and the second set of programmable tasks being

performed by the respective first and second agency;
executing the first set of programmable tasks;

receiving instructions from the one of more users to

manage the real time data and the non-real time data;
and

terminating, based upon the monitored data of the first set

of programmable tasks and the second set of program-
mable tasks by the respective first and second agency,
the first agency and the second agency.

13. The method of claim 12, further comprising: tracking
a progress of the first agency and the second agency and a
plurality of messages communicated by the first agency and
the second agency.

14. The method of claim 12, further comprising: one of
activating and terminating a lifecycle of one or more of the
first agency and the second agency upon receiving a corre-
sponding command via one or more of the plurality of tabs.

#* #* #* #* #*

	Front Page
	Drawings
	Specification
	Claims

